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Abstract— In this paper we present the idea that by using AI
planning in concert with formal task modeling, the overhead
associated with plan creation for complex tasks can be reduced.
The proposed approach uses a SysML taxonomy to model the
system capabilities and the process specification, and the PDDL
planning language to determine acceptable objective solutions.
This idea is applied to the manufacturing domain, and examples
are shown modeling a multi-robot system in an automobile
manufacturing environment. A discussion is given regarding
the merits of the demonstrated approach.

I. INTRODUCTION

Robotics in manufacturing is seeing a second renaissance
of sorts in today’s world. This stems in a large part from
recent advances in perception and manipulation platforms,
and also a desire to free robots from their safety engineered
cages to allow humans to work along side them to solve
harder problems. Examples include efforts from Rethink
Robotics (the Baxter platform) and ABB (the Frida plat-
form), who are designing robots with flexible manipulation
and advanced perception, that are specifically designed to
work in collaboration with humans in human environments
safely. With this renewed desire to automate tasks in the
manufacturing domain, a problem that has persisted presents
itself again: namely, the best way to model tasks, and to what
extent can we automate the modeling of tasks and execution
plans in these settings.

This problem applies to both these new areas where robots
and humans are collaborating to solve tasks, but also to other
areas of robotics and automation in manufacturing, such as
large scale airplane wing assembly. One reason it has per-
sisted for so long is simply that programming robots is hard.
It requires deep technical knowledge, it is time consuming,
and programming robots is done by specification with respect
to the system requirements. For decades researchers in both
industry and academia have looked for ways to reduce the
overhead that this kind of automation entails. Methods such
as programming by demonstration have attempted to reduce
this load by teaching a robot tasks by demonstrating how
those tasks are performed. Programming in this way requires
less technical knowledge, is more intuitive, and would thus
cut the necessary time required to program the robot.

Unfortunately, at least in manufacturing, these methods
have not yet proven to be robust enough to generalize across
a wide enough area such that they can be useful, and we are
still left searching for a good way to automate task modeling
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and robot execution, such that these do not require users with
specific technical skills and deep domain knowledge.

To be able to feasibly solve this problem, we first need a
method to model the tasks necessary to enable the robot
to achieve its programming objective. We begin here by
specifying a taxonomy that defines skill primitives, or robot-
specific skills that a robot can perform such as pick-up or
detect, and constraints related to those skill primitives. Hav-
ing this taxonomy allows us to specify how task components
can be used to build higher-level tasks.

We proceed further to also show how artificial intelli-
gence planning methods can be applied to the manufacturing
assembly domain using this task modeling framework. We
expect this work will contribute to the manufacturing robotics
domain by showing how such a framework can be used in
conjunction with formal planning methods to improve the
automation process and reduce dependence on user effort. To
the planning community, we expect this work to contribute
to the body of knowledge by demonstrating relatively new
planning methods, taking into account trajectory constraints,
successfully applied to specific manufacturing problems.

This paper will proceed as follows. An overview of
related work in robotics and manufacturing will be presented
in section II. Following this, an introduction to our task
modeling method, classical planning, and the BasicAssembly
planning domain used in this work will be given in section
III. Sections IV and V will present different examples of
planning with manufacturing problems, along with a discus-
sion of different design choices. We will conclude in section
VI by mentioning future directions for this work.

II. RELATED WORK

Given that programming robots is a difficult task requiring
considerable technical knowledge, a great deal of prior work
has focused on addressing how to make robot programming
more intuitive and more accessible to operators with less
technical experience. Much of this work has focused on find-
ing efficient and effective methods for representing system
knowledge to accomplish this task.

One philosophy has worked on encoding task knowl-
edge as a function of motion. Examples of this type of
representation include dynamical systems [10] and object-
action complexes [14]. Another philosophy has espoused
the view that one can effectively represent important system
knowledge symbolically, such as topological task graphs [1].
This symbolic approach assumes that the system has more
inherent knowledge (it knows how the relationships between
the symbols and physical instantiations behave), while it
allows for the modeling of more high-level concepts than
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Fig. 1: A model instance for assembly tasks.

motion-based representations. Recent work by Kaelbling and
Lozano-Pérez [11] attempts to combine symbolic task plan-
ning and geometric motion planning into a single approach.

More similar to our approach, other work has used
different knowledge representations to simplify the robot
programming problem. The work of Lyons et al. [15] defined
a model for robot computation using port automata. Kosecka
et al. [12] used a discrete event systems framework to model
tasks and behaviors for robotics. Recent work includes that of
Dantam, which takes a grammar-based approach to represent
sensorimotor information [4].

There is also work that has been done in representing
manufacturing and assembly objectives, such as the appli-
cation of Petri Nets [19]. Another approach is the work of
de Mello and Sanderson [8], which uses AND/OR graphs to
enumerate all possible paths through the assembly process
to get to the overall objective (e.g. an assembled product.)
The paper then proposes to use a graph search algorithm to
find an appropriate path through the graph based on specific
problem specifications. However, this method does not allow
for various goal specifications. Symbolic planning methods
such as the one we adopt in this paper are able to provide a
broad range goal specification based on sub-goals, trajectory
constraints, cost metrics, and soft preferences.

Work by Kress-Gazit, et al., [13], [6] uses linear temporal
logic to model task specifications to produce correct robot
controllers for different tasks. While this planning represen-
tation is able to take advantage of the larger range of goal
specifications as opposed to the previous example, it is far
more complex than the planning representation used in our
work, and perhaps is less likely to have a big impact to the
manufacturing domain at this stage.

Similar to our goal, Balakirsky et al. [2] used the OWL
ontology to provide a method for structuring knowledge
in such a way as to be reusable for different problems,
applied to kitting applications. Our work likewise proposes
a multi-layered representation, but at a different level of
abstraction. Our work also differs fundamentally in that our
representation is proposed to improve not only modularity in
knowledge, but also usability and intuitiveness for users.

III. SYSTEM

A. Models, processes, and sequences for manufacturing
One goal of this work is to structure knowledge in such a

way that lends itself to modularity, such that it can be used
in different problems and contexts. To this end, we define
the model space as the collection of all possible capabilities
that a robot or robotic system may employ to accomplish
some objective in the real world. An instance of model
space would model the capabilities required to accomplish
tasks in a specific application domain, such as manufacturing,
laboratory automation, etc. The model space would thus span
all capabilities needed in all robot application domains.

In this work, a model instance takes the form of a SysML
taxonomy [17] that specifies each of these capabilities.
SysML (or Systems Model Language) is a general modeling
language for systems and systems engineering, and is defined
as an extension of the popular UML modeling language.
Benefits of using SysML include an expressive modeling
language and tools for code generation, verification, and
validation of system models.

For example, Figure 1 shows a model space instance
for the manufacturing assembly domain [9]. The simplest
building blocks in the taxonomy are the skill primitives,
which are atomic actions that a robot is able to perform.
The skill primitives are complemented by certain parameters
or constraints on the action to be performed. For example,
actions such as Align and Transport will often be done with
respect to some goal or destination pose.

Based on the capabilities specified in the model space,
we further define the process space as the collection of all
system configurations and goal specifications that specify
an environmental robot setup and objective. As with model
space, a process instance takes the form of a SysML taxon-
omy, and it specifies the robot configurations and goals for a
desired application domain. Figure 2 shows an instance for
the manufacturing assembly domain.

Using these two instances, we can fully specify a system
and objective. At this point, various methods can be used to
find a solution or plan to solve this problem. One method of
realizing this plan is the direct method, or having a human
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Fig. 2: A process instance for an assembly task.

directly encode the plan into SysML, which would then
specify how the available robots would execute the actions
to solve the problem. In this case the plan takes the form
of a SysML sequence instance, which uses the hardware
dependent implementation of skills to instruct the robot how
to go about solving the problem, as for instance in Figure 3.

The sequence instance is intended to show the organization
of an assembly objective into a sequence of actions that are
to be performed, utilizing the skills described in the model
taxonomy as discrete steps in the sequence. Each message
from the robot to either the fixture or part bin represent an
instantiation of a skill primitive (e.g., message 1 is a Detect).

This manual encoding method can be effective, but has
several drawbacks. As mentioned in the introduction, pro-
gramming robots is hard as it requires deep technical knowl-
edge and is time consuming. Apart from the overhead of
specifying an initial procedure, one obvious difficulty is that
any time some change in the configuration (or the target
outcome) is required, additional resources are needed in
order to specify an updated procedure.

Moreover, as this approach typically does not rely on
a formal specification of the preconditions and effects of
actions, no automated way can be used to check for errors
and inconsistencies in the plan. This makes it possible that a
user may even design a plan that could damage a workpiece,
or put a robot into a dangerous configuration. Similarly,
there is no easy way to guarantee success of the procedure
in terms of meeting all of the objective goals or identify
any guarantees on the optimality of the procedure. All of
these issues are typically resolved by trial and error or using
domain-specific tools for simulating and analyzing execution.

This is where artificial intelligence planning methods can
offer significant benefits. By integrating planning into the
workflow, the planner can take a considerable burden off
of the user by addressing the previous issues. In this way
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Fig. 3: A sequence instance for an assembly task.

parametrized solutions can be generated by the system,
reducing the overhead required for manually specifying com-
plex manufacturing tasks. Alternatively, the planner can aid
the user by presenting potential plans that the user can then
further tailor to meet changing needs in dynamic scenarios.
In this work we aim for such functionality and adopt the so-
called Planning Domain Definition Language (PDDL) [16].

The idea is that based on a model instance that corresponds
to a particular manufacturing domain, we can specify a
PDDL planning domain that formalizes the preconditions
and effects of the available actions in the domain. Then,
from a process instance that corresponds to a particular
manufacturing problem in this domain, we can specify a
PDDL planning problem that formalizes the configuration
of the available robots and resources as well as the intended
goal we want to achieve. Then with these two specifications
at hand we can employ PDDL planners to search and find a
solution, that is, in effect an appropriate sequence instance
for this manufacturing domain/problem combination.

As the academic field of automated planning evolves, this
approach to generating sequence instances in an automated
way can also enjoy the increasing set of features for the de-
veloped PDDL planners. In particular, apart from generating
a sequence instance that satisfies basic requirements, state-of-
the-art planners can take into account action cost, duration,
parallelism, and are able to search for optimized solutions
that maximize or minimize given metrics and preferences.

Next, we introduce the necessary details of STRIPS plan-
ning and PDDL, and proceed to specify a PDDL planning
domain for the assembly manufacturing domain.

B. STRIPS planning and the language of PDDL

In the area of classical planning one is faced with the
following task: given i) a complete specification of the initial
state of the world, i.e., an application domain, ii) a set of
action schemas that describe how the world may change,
and iii) a goal condition, one has to find a sequence of
actions such that when applied one after the other in the
initial state, they transform the state into one that satisfies



the goal condition. In this paper we focus on the STRIPS
formalism [5] with some extensions.

In STRIPS, the representation of the initial state, the action
schemas, and the goal condition is based on literals from
predicate logic. For example, arm-at(arm3, station7) is a
positive literal that may be used to represent that the robotic
arm “3” is located at the working station “7”. Similarly, the
negative literal ¬arm-holding(arm3, part12) may be used to
say that the same arm is not holding a particular part.

The initial state is specified as a set of positive ground
literals. This provides a complete specification of the state
based on a closed-world assumption, that is, for all ground
literals not included in the set, the negative version of the
literal is assumed to hold.

The action schemas specify the available actions as well as
their preconditions and effects using sets of ground literals.
In the case of preconditions a set of positive literals specify
what needs to be present in the state representation in order
for the action to be executable, and for the effects of an
action, a set of positive and negative literals specify how
the state should be transformed after action execution: all
the positive literals in the set of effects are added in the set
describing the state, and all negative literals are removed.

A goal condition is also a set of positive ground literals.
The intuition is that the goal is satisfied if all the literals listed
in the goal condition are included in the set that describes the
state. A solution then to a planning problem is a sequence
of actions such that if they are executed starting from the
initial state, checking for corresponding preconditions, and
applying the effects of each action one after the other, they
lead to a state satisfying the goal condition.

In this paper we focus on a specific syntax for describing
STRIPS planning tasks following the Planning Domain Defi-
nition Language (PDDL) [16]. PDDL is a standard language
for specifying planning tasks that is widely used in the
academic planning community. In PDDL, the specification
of the predicates and the action schemas is separated from
the specification of the initial state and the goal condition.
The first part is typically referred to as the planning domain
and the second part as the planning problem. This allows us
to define a number of planning problems for the same plan-
ning domain. In particular, for a manufacturing application
domain a planning domain can specify the functionalities
of robots that may be available at different times. Using
this planning domain then, planning problems can represent
different configurations for the available robots and a goal
condition for the corresponding manufacturing task.

The syntax of PDDL follows the logical representation
of literals but a prefix notation is used. In this way, the
positive literal arm-holding(a, p) may be represented as
(arm-holding ?a ?p), and the negative version of the
literal may be represented as (not(arm-holding ?a ?p)).
Note that variables are denoted using a preceding ques-
tion mark. The special predicates (:predicates ...)
and (:action ...) are used for the specification of the
planning domain, with the intuitive meaning. Similarly,
the special predicates (:objects ...), (:init ...), and

(:goal ...) are used to specify a planning problem. This
notation will become more clear in the next section where
we introduce the BasicAssembly planning domain.

Finally, we will appeal to some more advanced features
of PDDL that go beyond STRIPS. In particular we will
adopt types for objects following functionality ADL [18].
For example ?a - arm will be used to denote that variable
?a can only be replaced by an object of type arm. Moreover,
we will appeal to PDDL3 [7], one of the latest specifications
of the PDDL language, in order to specify simple trajectory
constraints for the desired goal condition. These constraints
will be used to specify the intended order in which the
sub-goals of the manufacturing task need to be executed,
essentially specifying the steps of a process to be planned.

C. The BasicAssembly planning domain

In this section we present the BasicAssembly PDDL
planning domain that captures some of the basic capabilities
of manufacturing robots. In particular, the domain represents
the high-level actions that are abstracted in the Capabilities
SysML taxonomy described in the previous section. These
actions are represented in terms of their preconditions and
effects. The intention is that in this way a system can plan on
the level of these capabilities of robots, leaving lower-level
activities such as motion planning to be handled at a lower
level at run-time.

A manufacturing site is represented as a set of robotic
arms that abstract the sensors and actuators of the site, a
set of parts that abstract the pieces to be handled in order to
achieve the relevant manufacturing task, and a set of stations,
each of which may be occupied by one or more robotic arms
and may be used to place or hold a number of parts. Except
for the very basic actions of moving and grasping that are
modeled with a separate action, a set of tools represents the
available operations that can be performed on the parts. In
PDDL terms, arms, parts, stations, and tools are all objects
of the PDDL problem. Following the typed-approach though,
there are four basic types in order to distinguish between
them, namely types arm, part, station, and tool.

We assume that the low-level details required for an
arm interacting with parts and stations is abstracted by
two high-level “detect-pose” actions, which can be handled
appropriately by each robotic arm at execution time. In the
high-level representation of BasicAssembly, in order for a
robotic arm to pick up a part ?p located at station ?s, it
should first move to station ?s, perform a detect-pose action
using available sensors, and then grasp the part using an
attached gripper (provided the arm is equipped with one).

The BasicAssembly PDDL domain uses a number of
predicates and action schemas to represent some basic func-
tionalities in manufacturing domains, as explained next.

a) The predicates of the domain:

The predicates of the BasicAssembly planning domain
essentially represent properties of the state of the manufac-
turing site at any time. In particular, the following predicates
represent information regarding the available robotic arms.



• (arm-canreach ?a - arm ?s - station)

• (arm-at ?a - arm ?s - station)

• (arm-capabilities ?a - arm ?t - tool)

• (arm-active ?a - arm ?t - tool)

• (arm-holding ?a - arm ?p - part)

The following predicates represent properties of the parts.
Note that some literals are used as book-keeping information
for modeling the robotic arm actions and their effects.

• (part-at ?p - part ?s - station)

• (part-state ?p - part ?t - tool)

• (pose-detected ?a - arm ?p - part ?s -

station)

More details for these predicates and their use can be
found in the complete PDDL specification of the BasicAs-
sembly domain in the appendix.

The intuition is that a set of positive ground literals of this
kind can be used to represent the initial state of the manu-
facturing site and the goal condition for planning purposes.
For example, the positive ground literals (arm-canreach
arm1 st1) and (arm-canreach arm1 st2) can be used
to model that arm1 can reach both stations st1 and st2
(and in fact according to the closed world assumption
only those stations). Similarly, (arm-capabilities arm1
grip) may be used to model that arm1 has a gripper.

We now proceed to present the action schemas that char-
acterize the available actions for the robotic arms.

b) The actions of the domain:

Action schemas in PDDL are defined in terms of their
preconditions and effects using the predicates of the domain.
For example, the following statement is an action schema
of the BasicAssembly domain that specifies the action of a
robotic arm ?a grasping a part ?p from station ?s.

(:action grasp
:parameters (?a - arm ?p - part ?s - station)
:precondition (and
(arm-at ?a ?s)
(part-at ?p ?s)
(arm-active ?a grip)
(arm-holding ?a no-part)
(pose-detected ?a ?p ?s))

:effect (and
(arm-holding ?a ?p)
(not (arm-holding ?a no-part))
(not (part-at ?p ?s))
(not (pose-detected ?a ?p ?s)))

)

The intuition is that a ground instance of this action
schema, e.g., (grasp arm1 p station2), can be per-
formed when the arm is located at the same station as the
part, the grip tool is activated, the arm is not holding another
part, and the required information about pose detection is
already present. These requirements can be met by the
previous execution of other appropriate actions, in particular
one that moves the arm to the right station, one that activates
the gripper, and one that provides information about the low-
level pose to be realized. These actions are also part of the
BasicAssembly domain and will be described next.

The result of performing the action is that the relevant part

is no longer located at the station, therefore the correspond-
ing literal is removed from the description of the state, while
a positive literal is added to represent that the arm is now
holding the part, among a couple of other details.

Note that in order to allow maximum compatibility with
available planners we use only positive literals in the precon-
ditions of actions, and as a result we model the information
that a robotic arm ?a is not holding any part with the
literal (arm-holding ?a no-part). This could be done
also with another predicate of the form (arm-gripperfree
?a) but we chose to use the same predicate arm-holding for
uniformity. Note also that we abstract the pose detection and
alignment needed, using an appropriate high-level condition
concerning the arm, part, and station in question, that is,
(pose-detected ?a ?p ?s) that can be achieved by an
appropriate detect action as explained next.

We now give a list of the action schemas of the Basi-
cAssembly domain which have the intuitive meaning. The
details for each action schema (parameters, preconditions,
effects) can be found in the complete PDDL specification of
the BasicAssembly domain in the appendix.

• activate(?a -arm ?old - tool ?new - tool)

• grasp(?a - arm ?p - part ?s - station)

• ungrasp(?a - arm ?p - part ?s - station)

• move(?a - arm ?from - station ?to -

station)

• carry(?a - arm ?p - part ?from - station

?to - station)

• employ(?a - arm ?t - tool ?p - part ?s -

station)

• detect-pose-part(?a - arm ?p - part ?s -

station)

• detect-pose-station(?a - arm ?p - part ?s

- station)

Note that in order to allow maximum compatibility with
available planners we also avoided using conditional effects,
and as a result chose to model the movement of an arm by
two different actions, one when the gripper is empty (move)
and one when the arm holds some part (carry).

IV. A CONCRETE EXAMPLE USING BASICASSEMBLY

In this section we will present an application example that
demonstrates the use of the BasicAssembly planning domain.

A. Car-door manufacturing scenario

This task concerns the preparation of a car-door part for
assembly into a car, taken directly from the factory floor as
shown in Figure 4. We will present two variations on the
common scenario according to which the part must be glued
and then welded before it is added to the assembly line.

B. Process instance P1

The first configuration of the scenario is shown in Fig-
ure 5. There are four stations: the part bin (the originating
location for the parts to be worked on), work station 1 (the
gluing station), work station 2 (the welding station) and the
assembly line. There are three robots, one which is able to



Fig. 4: Manufacturing of car door.

reach all stations, and two specialized robots for each work
station. This problem is formalized in PDDL as follows:

(define (problem p1) (:domain assembly)
(:objects
arm1 arm2 arm3 - arm
car-door no-part - part
part-bin station1 station2 assembly-line - station
grip detect weld glue no-tool - tool )

(:init
(arm-canreach arm1 part-bin)
(arm-canreach arm1 station1)
(arm-canreach arm1 station2)
(arm-canreach arm1 assembly-line)
(arm-canreach arm2 station1)
(arm-canreach arm3 station2)
(arm-at arm1 part-bin)
(arm-at arm2 station1)
(arm-at arm3 station2)
(arm-capabilities arm1 grip)
(arm-capabilities arm1 detect)
(arm-capabilities arm2 glue)
(arm-capabilities arm2 detect)
(arm-capabilities arm3 weld)
(arm-capabilities arm3 detect)
(arm-active arm1 no-tool)
(arm-active arm2 no-tool)
(arm-active arm3 no-tool)
(arm-holding arm1 no-part)
(arm-holding arm2 no-part)
(arm-holding arm3 no-part)
(part-at car-door part-bin))

(:goal
(and (part-state car-door glue)

(part-state car-door weld)
(part-at car-door assembly-line)))

(:constraints
(and (sometime-before (part-state car-door weld)

(part-state car-door glue))
(sometime-before (part-at car-door assembly-line)

(part-state car-door weld)))))

Predicate :objects is used to specify all the available
objects in the PDDL problem (corresponding to the process
instance in question). Note that objects are listed according to
their type, e.g., here there objects of type arm are specified.

Predicates :init and :goal specify the initial state and
the desired final state, using positive ground literals. The
initial state is specified as a list of literals, while the goal
condition is formalized as a logical sentence (in this case
using logical conjunction). The intuition is that the final state
should be such that all three sub-goals hold, i.e., the glue tool
has been employed to the car-door, the weld tool also, and
the car-door is located at the assembly line.

Note that in basic STRIPS planning problems there is no
information about the order in which the sub-goals need to
be achieved. Extensions, though, have investigated how to

Fig. 5: Assembly process instance P1.

fine-tune the resulting plan in terms of soft preferences and
hard constraints. In particular in PDDL3, one of the latest
versions of PDDL, hard trajectory constraints can be used
to specify the order in which sub-goals should be achieved.
These are specified using the :constraints predicate and
the sometime-before keyword.

Trajectory constraints are a crucial aspect in the context
of manufacturing as essentially we are interested in planning
for a particular type of sequence, not just any one that
achieves sub-goals in any order. As this feature is a recent
addition, currently not many planners fully support it. For
our experiments we used the planner OPTIC [3] which was
one of the very few able to handle trajectory constraints well
and also supports other features we intend to use.

The resulting plan is shown here in time-steps:

01: (activate arm1 grip detect)
01: (activate arm2 glue detect)
01: (activate arm3 weld detect)
02: (detect-pose-part arm1 car-door part-bin)
03: (activate arm1 detect grip)
04: (grasp arm1 car-door part-bin)
05: (carry arm1 car-door part-bin station2)
05: (activate arm1 grip detect)
06: (detect-pose-station arm1 car-door station2)
07: (carry arm1 car-door station2 station1)
08: (detect-pose-station arm1 car-door station1)
09: (carry arm1 car-door station1 assembly-line)
10: (detect-pose-station arm1 car-door assembly-line)
11: (activate arm1 detect grip)
11: (carry arm1 car-door assembly-line station1)
12: (ungrasp arm1 car-door station1)
13: (detect-pose-part arm2 car-door station1)
13: (activate arm1 grip detect)
14: (activate arm2 detect glue)
14: (detect-pose-part arm1 car-door station1)
15: (employ arm2 glue car-door station1)
15: (activate arm1 detect grip)
16: (grasp arm1 car-door station1)
17: (carry arm1 car-door station1 station2)
18: (ungrasp arm1 car-door station2)
19: (detect-pose-part arm3 car-door station2)
19: (activate arm1 grip detect)
20: (activate arm3 detect weld)
20: (detect-pose-part arm1 car-door station2)
21: (employ arm3 weld car-door station2)
21: (activate arm1 detect grip)
22: (grasp arm1 car-door station2)
23: (carry arm1 car-door station2 assembly-line)
24: (ungrasp arm1 car-door assembly-line)

Note that the planner accounts for parallelism as some
actions of different arms occur at the same time, e.g., the
activation of tools for all three arms at time-step 01.



C. Process instance P2

Now we report on a variation that is similar to the previous
process instance, except that this time robot arm1 is not able
to reach station2. Instead, the specialized robot arm2 is
able to reach both station1 and station2. This implies
that moving the car-door part from station1 to station2
to station3 cannot be done by arm1 alone as in the
previous case. Instead, an additional coordination between
arm1 and arm2 is required. All other considerations are the
same as the previous example. The resulting plan follows:

01: (activate arm1 grip detect)
01: (activate arm2 grip detect)
01: (activate arm3 weld detect)
02: (detect-pose-part arm1 car-door part-bin)
03: (activate arm1 detect grip)
04: (grasp arm1 car-door part-bin)
05: (carry arm1 car-door part-bin station1)
05: (activate arm1 grip detect)
06: (detect-pose-station arm1 car-door station1)
07: (carry arm1 car-door station1 assembly-line)
08: (detect-pose-station arm1 car-door assembly-line)
09: (activate arm1 detect grip)
09: (carry arm1 car-door assembly-line station1)
10: (ungrasp arm1 car-door station1)
11: (activate arm1 grip detect)
11: (detect-pose-part arm2 car-door station1)
12: (detect-pose-part arm1 car-door station1)
12: (activate arm2 detect glue)
13: (activate arm1 detect grip)
13: (employ arm2 glue car-door station1)
14: (activate arm2 glue grip)
15: (activate arm2 grip detect)
16: (detect-pose-part arm2 car-door station1)
17: (activate arm2 detect grip)
18: (grasp arm2 car-door station1)
19: (activate arm2 grip detect)
20: (detect-pose-station arm2 car-door station1)
21: (carry arm2 car-door station1 station2)
22: (detect-pose-station arm2 car-door station2)
23: (activate arm2 detect grip)
24: (ungrasp arm2 car-door station2)
25: (detect-pose-part arm3 car-door station2)
25: (activate arm2 grip detect)
26: (activate arm3 detect weld)
26: (detect-pose-part arm2 car-door station2)
27: (employ arm3 weld car-door station2)
27: (activate arm2 detect grip)
28: (grasp arm2 car-door station2)
29: (carry arm2 car-door station2 station1)
30: (ungrasp arm2 car-door station1)
31: (grasp arm1 car-door station1)
32: (carry arm1 car-door station1 assembly-line)
33: (ungrasp arm1 car-door assembly-line)

Note that this process instance needs more time-steps than
the previous one. This variation demonstrates the planner’s
ability to deal with configuration and process changes.

V. DISCUSSION

In this work we illustrate the utility of using a formal
planning domain specification coupled with a task modeling
framework. The simple example presented highlights some
of the basic aspects of what can be achieved.

As a first step we focused on a high-level representation of
the preconditions and effects of actions in a manufacturing
assembly domain, that can be used to provide well-structured
solutions in an automated way. These solutions still require
manual work in a lower level in order to connect the high-
level abstract actions to the low-level capabilities of each
component. In the general case of manual robot program-
ming, this is difficult and requires resources such as time
and technical knowledge. When the scenario is updated or
changed, the manual robot programmer must reprogram the
entire scenario from the ground up, even for small changes.

The intention is that by relying on an appropriate abstraction
for robotic actions and realizing the high-level/low-level
connection for the available hardware, one can benefit by
re-using these models to handle future scenarios, and reduce
the resources required to realize the solutions.

It should be noted that a number of assumptions go into
this approach as currently implemented. The lowest level
of abstraction relies on hardware-specific implementations
such as motion planners and pose estimation algorithms.
The current system does not take fault detection or recovery
into consideration, and assumes that actions proposed by
the system are successfully achieved by the robot. Other
assumptions have to do with the environment, or process
model. For example, we believe it is not unreasonable to
assume that every workpiece in the environment is reachable,
as in manufacturing settings the environment is often highly
engineered to make the task achievable. Note also that this
approach will not significantly speed up some aspects of pro-
gramming the system, such as specifying complex kinematic
motions (the weld trajectory, for example). This is to be
expected, however, as this approach has targeted modeling
and generation of manufacturing assembly solutions, not
methods of parameterization.

One direction for future work is to investigate more refined
abstractions that can provide a variable level-of-detail for
available hardware platforms used in practice. For example,
it may be helpful (or for some platforms necessary) to
distinguish as two separate actions the task of detecting an
object and detecting a location pose for placing that object.
Also, different types of robotic devices may be able to
handle an action set that spans more than one level-of-detail.
The intuition is that as the action representations become
more specific modeling the capabilities of existing platforms,
the planner obtains more detailed information and can then
provide solutions of better quality that can be incorporated
easier in the real manufacturing setting.

A different direction for future work is incorporating more
features for refining the desired solution for a sequence
instance. PDDL3 already accounts for cost metrics, pref-
erences, as well as continuous time and durative actions.
We intend to investigate which combination of features is
intuitive and practical and can be effective in providing
greater flexibility by automatically generating solutions as
sequences for complex manufacturing problems.

Finally, our experimentation with available PDDL planners
showed that even though many advanced features have been
investigated leading to robust solutions, there is less focus
on trajectory constraints, which is the most crucial one for
the type of problems we are interested in the manufacturing
setting. We believe that our work may provide useful feed-
back to the planning community with respect to a possible
wide application domain.

VI. CONCLUSION

In this paper we investigate how a planning domain
representation in concert with a task modeling framework
can be used to reduce the work involved in plan creation for



complex manufacturing tasks. This provides the opportunity
to relieve some burden from the robot user, and to improve
the reliability of those plans. For the scope of this paper
we focused on basic functionality of robotic arms in a
manufacturing assembly setting. Our investigation shows that
recent versions of the so-called Planning Domain Definition
Language (PDDL), and software planners conforming to
them, are suitable for representing the relevant problems and
searching for solutions in an automated way. For future work
we intend to explore more complex manufacturing objec-
tives, especially cases that require more varied specification
using metrics and preferences.
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APPENDIX

A. BasicAssembly PDDL domain

(define (domain assembly)
(:requirements :strips :typing)

(:types arm station tool part)

(:constants
no-tool grip detect - tool
no-part - part )

(:predicates
(arm-canreach ?a - arm ?s - station)
(arm-at ?a - arm ?s - station)
(arm-capabilities ?a - arm ?t - tool)
(arm-active ?a - arm ?t - tool)
(arm-holding ?a - arm ?p - part)
(part-at ?p - part ?s - station)
(part-state ?p - part ?t - tool)
(pose-detected ?a - arm ?p - part ?s - station) )

(:action activate
:parameters (?a -arm ?old - tool ?new - tool)
:precondition (and (arm-capabilities ?a ?new)

(arm-active ?a ?old))
:effect (and (arm-active ?a ?new) (not (arm-active ?a ?old))) )

(:action detect-pose-part
:parameters (?a - arm ?p - part ?s - station)
:precondition (and (arm-at ?a ?s) (arm-active ?a detect)

(part-at ?p ?s))
:effect (pose-detected ?a ?p ?s) )

(:action detect-pose-station
:parameters (?a - arm ?p - part ?s - station)
:precondition (and (arm-at ?a ?s) (arm-active ?a detect)

(arm-holding ?a ?p))
:effect (pose-detected ?a ?p ?s) )

(:action grasp
:parameters (?a - arm ?p - part ?s - station)
:precondition (and (arm-at ?a ?s) (arm-active ?a grip)

(arm-holding ?a no-part) (part-at ?p ?s)
(pose-detected ?a ?p ?s))

:effect (and (arm-holding ?a ?p) (not (arm-holding ?a no-part))
(not (part-at ?p ?s)) (not (pose-detected ?a ?p ?s))) )

(:action ungrasp
:parameters (?a - arm ?p - part ?s - station)
:precondition (and (arm-at ?a ?s) (arm-active ?a grip)

(arm-holding ?a ?p) (pose-detected ?a ?p ?s))
:effect (and (arm-holding ?a no-part) (not (arm-holding ?a ?p))

(part-at ?p ?s) (not (pose-detected ?a ?p ?s))) )

(:action move
:parameters (?a - arm ?from - station ?to - station)
:precondition (and (arm-at ?a ?from) (arm-canreach ?a ?to)

(arm-holding ?a no-part))
:effect (and (arm-at ?a ?to) (not (arm-at ?a ?from))) )

(:action carry
:parameters (?a - arm ?p - part ?from - station ?to - station)
:precondition (and (arm-at ?a ?from) (arm-canreach ?a ?to)

(arm-holding ?a ?p))
:effect (and (arm-at ?a ?to) (not (arm-at ?a ?from))) )

(:action employ
:parameters (?a - arm ?t - tool ?p - part ?s - station)
:precondition (and (arm-at ?a ?s) (arm-active ?a ?t)

(arm-holding ?a no-part) (part-at ?p ?s)
(pose-detected ?a ?p ?s))

:effect (and (part-state ?p ?t) (not (pose-detected ?a ?p ?s))))
)


