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Abstract— Personal service robots will need to understand
semantic object relationships and task context in order to assist
humans in their everyday lives. This paper will demonstrate
a technique using keywords, spatial relationships, colors, and
other contextual information to assist in the mobile manipula-
tion and object recognition tasks. Preliminary results using a
mobile manipulation platform are also presented.

I. INTRODUCTION

Personal service robots will need sophisticated object
understanding to be useful in real world domestic environ-
ments. When interacting with humans, it will be helpful
for robots to be able to understand semantic and contextual
information regarding objects. For example, if a robot needs
to retrieve a cup from a table that contains many cups, some
additional information is needed to determine which one the
robot should retrieve. This might take the form of a spatial
semantic relationship, such as “get the cup on the left”, or
a qualitative relationship “get the yellow cup”. Enabling a
robot to utilize this type of information allows it to receive
requests that are sufficiently specific to allow it to complete
its task, without needing to resort to requests such as “get
cup ID #12”. In this paper, we propose a technique using
keywords, spatial relationships, colors, and other contextual
information which enables the robot to reason about which
object it is meant to retrieve or operate on in ambiguous
situations.

Some relevant related works will be presented in section
II. The mobile robot used in this paper and the algorithms de-
veloped for this workshop are explained in section III. Some
preliminary experimental results are presented in sections IV,
V, and VI. Finally, future works are explored in section VII.

II. RELATED WORK

Several recent mobile manipulation systems from the lit-
erature include some reasoning about semantic information.
The STanford AI Robot (STAIR) is a personal service robot
research platform which makes use of monocular and stereo
vision [16]. STAIR uses foveated vision to focus a high
resolution pan-tilt-zoom camera on interesting regions seen
in the wide angle camera. STAIR also evaluates candidate
objects based on spatial semantic properties such as the

stapler is on the table, or the door handle should be found
in one of a few areas once the door is identified [12] [15].

The domestic service robot “Domo” [6] uses behavior
based control and human robot interaction to accomplish
object retrieval tasks. Domo is equipped with a vision system
which is able to roughly estimate the depth to objects of
interest. The use of series-elastic actuation makes this robot
able to reach out and touch environmental features in order
to refine their depth estimate. Domo also considers visual
properties of the objects in the environment in order to figure
out how to grasp them.

NASA’s Robonaut [2] is a mobile manipulation platform
designed to assist astronauts with their duties in space.
Through the use of perspective taking [19], this robot is
able to be more effective in handling the instructions it is
given in multiple frames of reference. Spatial constraints
and occlusion offer more cues to disambiguate which object
to which the human is referring when the robot takes the
person’s perspective into account.

In the recognition and tracking of 3D objects, various
approaches have relied on natural features such as edges,
corner points, or keypoint descriptors. One of the advantages
of using edges is that they are relatively computationally
efficient and moderately invariant to viewpoint and illu-
mination. In addition, edge features are quite common in
human environments, and provide strong tracking cues. With
prior knowledge of objects, such as 3D CAD models, the
RAPiD style methods have shown good results on textureless
objects [10], [5], and have been extended to track an object
consisting of 3D curves [18]. Similarly, Vacchetti et al. [20]
used corner features with keyframes, which are 2D reference
images of an object model and its pose parameters, to
estimate the object pose. The recent approach [8] went
further by using the scale invariant feature descriptors [13],
and that approach was recently applied to robotic manipu-
lation [4]. Since those natural features have pros and cons,
there have been several attempts to combine them. Rosten
and Drummond [17] employed both edge and corner features
for robust 3D tracking. While they used corner points to
estimate motion between two consecutive frames, Vacchetti
et al. [21] also used corner points to match input images
with the closest keyframes. Panin and Knoll [14] combined



contour-based tracking with an initial pose estimation using
scale invariant keypoints [13] for fully automatic tracking.

III. METHODS

Our personal service robot consists of a variety of hard-
ware and software components. The mobile base is a Seg-
way RMP-200 balancing platform, which is equipped with
a SICK LMS-291 laser range finder for localization and
obstacle avoidance. A KUKA KR5-Sixx industrial six axis
arm is mounted on the top of the Segway base. The end
effector we use is a Schunk PG-70 parallel jaw gripper with
custom compliant fingers. A PointGrey Flea firewire camera
is mounted on the top of the end effector. The robot is shown
in figure 1. We have developed our software in the Microsoft
Robotics Studio (MSRS) environment [11], now known as
Microsoft Robotics Developer Studio.

Fig. 1: The robot system used for this work.

A. Localization and Mapping

Localization is a key component for a mobile robot to
work and function in the real world. For both mapping and
localization, the approach that we use is a grid-based Rao-
Blackwellized particle filter, based on the system proposed
by Hähnel et. al [9]. The system works by using a particle
filter to generate grid-based maps from wheel odometry and
laser scans. These are used to estimate the map that best fits
the data. Several consistent map hypotheses are maintained
by the filter, while inconsistent maps are pruned.

B. Manipulation

The KUKA KR5-Sixx arm is controlled through KUKA’s
Remote Sensor Interface (RSI), which allows for velocity
control in operational space. The manipulation task is carried
out in the global frame of reference. Our mobile robot base
is dynamically balanced; this results in dynamic motion at

Fig. 2: A map of the environment showing the robot, target
location, and path traveled.

the end effector. This motion can be compensated for with
tight visual feedback as long as the object is in view of
the wrist camera. Unfortunately, our gripper configuration
often occludes the camera’s view of the object before the
grasp is completed, so the final reach must be completed
without visual feedback. The robot has typically been able
to achieve some moderately reliable performance despite
this shortcoming. To improve the performance, the motion
of the mobile base is incorporated into the visual servoing
computation. By maintaining the pose of the object in the
global reference frame, our robot can now compensate for
the slight motion of the base to keep the grasp on target even
when the visual tracking is no longer possible.

Equation 1 shows the transformation for the pose of the
object in world coordinates (Pw),

Pw = Tw
s ∗ T s

b ∗ T k
s ∗ T t

c ∗ Pc (1)

where (Pc) is the object pose in the camera frame, (T t
c )

is the end effector frame transform, (T k
s ) is the robot arm

kinematic configuration, (T s
b ) is the platform base frame

transform, and (Tw
s ) is the world coordinate frame transform.

(Pw) is then used in Equation 2 to determine the desired
configuration of the arm.

T k
s

∗
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b
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s
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C. Object Recognition and Tracking

One of the key components of a mobile manipulation
system is recognition and tracking of objects. The keypoint
and descriptor based methods [13], [1] which have been
rapidly improved over the last decade have opened up the
possibility of using them in visual servo control. However,
these state-of-the-art schemes are still computationally ex-
pensive, making it difficult to directly apply them to visual
servo control. Therefore, we utilize a combined approach that
uses SURF features [1] for the global pose estimation and
then relies on edge features for the local pose estimation.



(a) Estimated pose (global) (b) Extracted edges (c) Projected 3D model (d) Estimated pose (local)

Fig. 3: Global and local pose estimation results. (a) The initial pose is estimated by the SURF keypoints matching in the
global pose estimation. (b) After estimating the initial pose, our algorithm use edges for the local tracking. (c) Since the
algorithm already knows the initial pose, it projects the 3D CAD model and generates sample points along the model. (b)
and (c) The green points are the generated sample points which are used in calculating errors (the red lines) between 3D
sample points and the closest 2D edges. (d) Note that the result of the local pose estimation is more accurate than that of
the global pose estimation.

(a) t = 0 (b) t = 1 (c) t = 50 (d) t = 100

(e) t = 150 (f) t = 200 (g) t = 250 (h) t = 300

Fig. 4: Tracking results over 300 frames. The yellow parallelepiped shows the estimated pose of the tea box object. (a) At
t = 0, the pose is estimated by the global pose estimation. (b) After one execution of the local pose estimation, the pose
starts to converge to the real pose. Our algorithm can converge after several frames. Since the local pose estimation relies
on the 1D search along the normal direction of each sample point, it is much faster than the global pose estimation.

1) Global Pose Estimation: In the global pose estima-
tion, our algorithm calculates an initial pose of the object.
Like [20], we obtain keyframes offline. Using the SURF
keypoint matching, the keyframes are compared with the
current image in order to estimate the pose. The estimated
pose is then refined by using RANSAC [7]. Fig. 3a shows the
estimated pose from the global pose estimation. The initial
pose estimate is accurate enough to initialize the local pose
estimation procedure.

2) Local Pose Estimation: Once an initial pose of the
object is estimated, edge features are used in our algorithm
that is based on Drummond and Cipolla’s work [5] for faster
pose estimation. First of all, we extract edge features by using
the Canny edge detector [3] as shown in Fig. 3b. Since we
already know the initial pose of the object from the global

pose estimation, we project the 3D CAD model onto the
current image (Fig. 3c). Sample points are generated along
sharp edges, which are determined from the 3D CAD model
offline.1 The sample points are depicted as green points in
Fig. 3b and Fig. 3c. Point visibility is determined through an
OpenGL occlusion query. After searching the closest edges
on the sample points along the normal direction, the final
6 DOF pose parameters are estimated by weighted least
squares [5] (Fig. 3d). Fig. 4 shows the tracking results of our
algorithm. Note that although the initial pose is not perfect,

1We use the face normal vectors from the 3D CAD model to determine
sharp edges. For example, if the face normal vectors of two adjacent faces
are close to perpendicular, the edge shared by the two faces is regarded as
a sharp edge. Similarly, if two face normal vectors are close to parallel, the
edge is regarded as a dull edge.



the local pose estimation enables the tracker to converge to
a consistent pose.

For the model format, we use polygon mesh models which
can be modeled by using a standard 3D modeling tool such
as Blender. Since we automatically determine sharp edges in
a polygon mesh model by using the aforementioned method,
we can handle any shapes of objects even having smooth
surfaces.

While the global pose estimation searches all of the
possible keypoint matches over all keyframes and the current
image, the local pose estimation only relies on the 1D search
along the normal direction of each sample point. Therefore,
the local pose estimation is much faster than the global
pose estimation.2 However, since the edges the local pose
estimation uses are not descriptive enough, it may lead to
spurious results when the algorithm is stuck in local minima.
To recover from this, we monitor tracking results of the local
pose estimation, and if the tracker loses the object, it reruns
to the global pose estimation.

D. Semantic Reasoning

To begin investigating how one might build a system that
is aware of semantic relationships such as those described
in section I, we devised a mobile manipulation scenario in
which a user can request an object, and optionally specify
some additional semantic property of the object in order to
disambiguate it from other objects of the same type. In our
scenario, the objects used are two boxes of tea which are
placed side by side on a table. Because these objects are both
boxes of tea, if a user requests that the robot find a tea box,
it will need to make use of additional semantic or contextual
information to determine which one the user intended.

As a first step towards making robots that can reason
about this type of semantic relationship between objects, we
designed a system capable of reasoning about one of the
simplest semantic relationships: horizontal spatial arrange-
ment (left vs. right). If the system is presented with multiple
objects of the same class (for example, ‘cups’ or ‘boxes’), it
can be instructed to indicate the leftmost or rightmost object.
This is accomplished by searching for all objects of a given
class. If multiple objects of a given class are detected, either
the leftmost or rightmost object is selected, based on the
user’s request.

One might also want a robot to be aware of the time of
day, and behave differently with respect to this contextual
information. For example, if a user requests some tea, the
robot could be made aware that it is inappropriate to bring
the user caffeinated tea after a certain hour. Our system stores
some object properties along with its object models, to which
we added whether or not the object in question contains
caffeine. If a user doesn’t specify otherwise, the system will
bring the user caffeinated tea if the current time is before
4pm, but decaffeinated tea after 4pm.

2In our system, the global pose estimation takes about 200 ms per frame
(5 Hz). The local pose estimation requires less than 50 ms per frame (20
Hz).

Another important semantic property of objects is color.
People often use color as a way to distinguish objects
from one another, so it is helpful for robots to be able to
understand what a user means if they request ‘the orange
mug’. Our system was modified to be able to distinguish
between objects based on their dominant color. For this
simple example, we chose a point in hue-saturation color
space that is representative for colors such as ‘orange’ and
‘yellow’. Objects can be classified as having one of these
color attributes by making a hue-saturation histogram of
the object model image, and comparing these against the
manually defined reference colors.

IV. EXPERIMENTS

Although extensive experiments are beyond the scope of
this paper, some preliminary tests were performed in order to
evaluate the system. We set up a simple task for our mobile
manipulation platform to test the semantic reasoning portion
of our system. In the experiment, a user indicates an object
of interest, and specifies the object’s location. The user can
optionally specify additional semantic information such as
the properties of ‘left’ or ‘right’, which can disambiguate two
objects of the same type. The user interface to our system is a
web page, which includes drop down lists of known objects,
locations, and additional optional semantic information (left,
right, orange, yellow, etc). The robot started in the middle of
our lab, then drove to a nearby table that it was told contained
the objects of interest. Upon arrival, the vision system would
detect and track the two boxes on the table, and the robot
would servo to and ”point at” either the left or right box.
We ran six trials, three for the left object and three for the
right object, which were all successful. Because our grasp
controller is one of the less reliable portions of our system,
we chose to point at an object rather than actually grasping it,
so as to focus on testing the robot’s perceptual ability rather
than its grasping ability. The robot can be seen in figure 5
successfully pointing at the left tea box.

Fig. 5: The robot successfully points at the left tea box.

V. DISCUSSION

The system demonstrated is shown to work reliably for
distinguishing semantic relationships with several differ-



ent objects in relatively simple environments. While our
approach succeeds in guiding the perception of semantic
properties with a small number of objects, it would not
scale well to a large number of objects and object types,
as the number of semantic relationships needed to accurately
describe a very large group of objects would be considerable.

While the threshold-based determination for time of day
in the selection of objects is simple, it serves to demonstrate
another possible use of semantic properties to disambiguate
between user requests. One could imagine a system where
simple properties such as these are learned and determined
through experiences with user preference.

Although we have investigated several ways that semantic
and contextual information can be applied to mobile manipu-
lation systems, there are many more opportunities for the use
of this type of information. Additional semantic information
of the types demonstrated here could clearly be added to
the system, for example allowing the robot to know about
additional spatial semantic relationships such as ‘top’ vs.
‘bottom’, or ‘front’ vs. ‘back’. Other examples of qualitative
semantic relationships could include shape (square, round,
triangular, flat), size (large, small, smallest).

Our system currently allows for labels to be attached
to both places and objects (or sets of objects). One could
imagine adding functionality to the system to allow it to
know what types of objects it should expect to find in
different places. For example, one might find mugs either
in the kitchen, or on people’s desks.

While the focus of this paper has been on using semantic
information to inform the perceptual system, we think that
this type of information could also be used to inform robot
control. For example, if we know that we are grasping a
square object, this implies that our controller should ensure
that the fingers grasp the sides of the object, rather than the
corners. However, if the object is known to be cylindrical,
we don’t have this type of constraint.

VI. CONCLUSION

In this paper we presented a system that demonstrated se-
mantic perception in mobile manipulation tasks. Our mobile
manipulator was given the task of identifying specific objects
based on semantic relationships. When the system navigated
to the specified object location, model-based techniques
were used for object recognition and tracking. Once objects
were being tracked at the specified location, the robot was
successfully able to distinguish the semantic relationship
between the objects (the ‘left’ object versus the ‘right’
object) and correctly identify the desired object. In a separate
experiment, the system was able to successfully disambiguate
between objects based on outside knowledge, the time of day,
demonstrating basic contextual reasoning.

VII. FUTURE WORK

Our group is exploring the use of new hardware and soft-
ware components for mobile manipulation tasks. We will be
switching to the DLR/KUKA LBR arm to take advantage of
its additional workspace as well as its payload capacity. The

LBR also can be powered with batteries, which is impossible
with the KUKA industrial controller. We are assembling a
3D laser scanner to use for the object recognition and grasp
planning routines.
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