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Abstract

Robust methods for representing, generalizing, and
sharing knowledge across various robotics systems
and configurations are important in many domains of
robotics research and application. In this paper we
present a method for modeling tasks and robot skills
to simplify the programming and reuse of knowledge
between robots in manufacturing environments. Specif-
ically, we propose an assembly taxonomy designed to
represent the decomposition of high-level, complex as-
sembly tasks into simple skills and skill primitives that
the robot must use in a specified sequence. By using
programming by demonstration to populate the taxon-
omy, we propose a method to easily interact with and
reuse knowledge in various manufacturing robotics sys-
tems, making it possible to reduce programming time
and overhead. We present both a detailed discussion of
this taxonomy, as well as an example of how the taxon-
omy can be applied to an assembly task.

Introduction

The popularity of robotics today is growing across all indus-
tries. Even in manufacturing, where robots have tradition-
ally been commonplace, new research has aimed at investi-
gating how to insert robotics even more into the manufac-
turing and assembly process. One problem that continues
to plague the adoption of robotics at all levels of industry
is one simple fact: programming robots is hard. It requires
deep technical knowledge, it is time consuming, and pro-
gramming robots is done by specification with respect to the
system requirements. Thus when a manufacturing environ-
ment changes, or a robot is replaced, there is a large amount
of overhead that goes into making the new system work.
One method proposed to address this problem is program-
ming by demonstration (Friedrich, Kaiser, and Dillmann
1997), (Kaiser and Dillmann 1995), (Dillman et al. 1999),
(Rogalla and Ehrenmann 1998). This has been a popular
research topic in manufacturing environments almost since
the advent of industrial automation (Nilsson and Johans-
son 1999). For decades researchers in both industry and
academia have looked for ways to reduce the overhead that
automation entails. To reduce this load, programming by
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demonstration aims to teach a robot tasks by demonstrating
how those tasks are performed. Programming in this way re-
quires less technical knowledge, is more intuitive, and would
thus cut the necessary time required to program the robot.

To make this feasible, we need a method to model the
tasks necessary to enable the robot to achieve its program-
ming objective. We begin by specifying a taxonomy that de-
fines skill primitives, or robot-specific skills that a robot can
perform such as pick-up or detect, and constraints related to
those skill primitives. Having this taxonomy be well-defined
allows us to unambiguously specify how these task compo-
nents can be used to build higher-level tasks. Programming
by demonstration could then be used to learn generalized
skills to populate the taxonomy.

We are interested in finding a generalized representation
for objectives or tasks that can be applied outside of the con-
text in which they were learned, such as on different robots
or in different applications. Skills learned in one setting or
context could then be transferred across multiple systems
and configurations for assembly tasks. In this work, we pro-
vide a well-defined taxonomy for describing skill primitives
and constraints for manufacturing tasks.

It is important to note here that the proposed framework
is not in any way limited to the manufacturing domain.
The taxonomic decomposition of tasks and objectives for
knowledge transfer and reuse is applicable in many areas
of robotics, including lab automation, home and service
robotics, and medical robotics. One could imagine a tax-
onomy for Prepare Meal and Mix Chemicals alongside the
Assembly Action taxonomy. The manufacturing domain,
and subsequently the assembly taxonomy is our demonstrat-
ing example for a deeper idea that we are trying to illustrate:
a way of representing tasks in different domains, along with
all of the domain-specific knowledge and requirements need
to perform those tasks, in such a way that knowledge can be
reused and shared effectively.

This paper proceeds as follows. We first address previous
work done in the area of knowledge reuse in general robotic
systems, including work done in programming by demon-
stration, industrial manufacturing, and knowledge represen-
tation in domestic and service robotics, in the Related Works
section. The System section then discusses the proposed as-
sembly taxonomy, along with the different components that
compose the taxonomy and the justification for their inclu-



sion. A motivating demonstration involving a simulated as-
sembly task is presented and discussed in Experiments, and
a brief discussion of the conclusions and future work follows
in the Conclusion.

Related Works

Given that programming robots is a difficult task requiring
considerable technical knowledge, a great deal of prior work
has focused on addressing how to make robot programming
more intuitive and more accessible to operators with less
technical experience. Much of this work has focused on
finding efficient and effective methods for representing sys-
tem knowledge to accomplish this task.

The long-studied problem of programming by demonstra-
tion has attempted to enable robots to generalize knowledge
about certain tasks so that this knowledge can be used in
solving problems in a different context than that in which
they were originally learned. This is accomplished by mod-
eling information about the motion and task, and different
methods have been proposed for representing this knowl-
edge. One philosophy has worked on encoding task knowl-
edge as a function of motion. Examples of this type of rep-
resentation include dynamical systems (Ijspeert et al. 2001)
and object-action complexes (Kriiger et al. 2011).

Another philosophy has espoused the view that one can
effectively represent important system knowledge symbol-
ically, such as using skill trees (Konidaris et al. 2011) and
topological task graphs (Abbas and MacDonald 2011). This
symbolic approach to knowledge representation assumes
that the system has more inherent knowledge (it knows how
the relationships between the symbols and physical instan-
tiations behave), while it allows for the modeling of more
high-level concepts than motion-based representations. Oth-
ers that have used this symbolic approach to address the is-
sue of knowledge reuse or knowledge transfer in areas other
than manufacturing include (Ekvall, Aarno, and Kragic
2006), (Ekvall and Kragic 2006), (Nicolescu and Mataric
2003)

Similar to the programming by demonstration paradigm,
other work has used different knowledge representations
to simplify the robot programming problem. The work of
Lyons, et. al. (Lyons and Arbib 1989) defined a model for
robot computation using port automata. Kosecka, et. al.
(Kosecka and Bajcsy 1993) used a discrete event systems
framework to model tasks and behaviors for robotics. More
recent work includes that of Kress-Gazit, et. al., (Kress-
Gazit, Wongpiromsarn, and Topcu 2011), (Finucane, Jing,
and Kress-Gazit 2010) using linear temporal logic to model
task specifications, and Dantam, which takes a grammar-
based approach to represent sensorimotor information (Dan-
tam and Stilman 2011).

Given a specific knowledge representation, a number of
other projects have addressed the problem of representing,
storing, and transferring knowledge between various robotic
systems.

In the STARAS (Skill-based Inspection and Assembly of
Reconfigurable Automation Systems) project (2011), a sys-
tem is developed to assist in the automatic reconfiguration of

95

automation systems. This is done due to the need for light-
weight (low overhead) processes to address current manu-
facturing demands. System components are designed both
to represent skills and parameters, as well as the process
flow. This is done using a specific ontology. A skill server is
designed to aid a human operator to match process require-
ments with the representations in the database.

Another project working on robot deployment in man-
ufacturing environments in the ROSETTA (RObot control
for Skilled ExecuTion of Tasks in natural interaction with
humans; based on Autonomy, cumulative knowledge and
learning) project (2012). This project tries to design indus-
trial robotic systems that are suitable for working around
and collaborating with humans in the manufacturing pro-
cess. One important aspect of their approach is a skill repos-
itory.

RoboEarth (Waibel et al. 2011), (Zweigle et al. 2009) is a
project aimed at creating a global repository for all knowl-
edge relevant to a robotic systems, including information on
environments, object models, action recipes, and semantic
information. The architecture is organized in three layers,
with the top layer being the global database, which acts as an
information server, a second layer containing hardware in-
dependent functions such as action recognition and semantic
mapping, and a bottom layer consisting of robot-specific im-
plementations. Knowledge representation and processing is
handled by the KnowRob system. (Tenorth and Beetz 2009)

System

In this section we will look in detail at a taxonomy for as-
sembly actions. To understand the organization of the pro-
posed taxonomy, we must look at and analyze how a robot
interacts with its environment.

Robots interact with the world by working toward some
objective, such as constructing an airplane wing. These ob-
jectives can be decomposed into a sequence of tasks that
must be accomplished to successfully achieve the objective,
such as attaching two sheets of metal together using a bolt.
Tasks can further be broken into skills, like threading a bolt,
and skill primitives, which are robot-specific actions like
closing a gripper around an object.

The Assembly Action taxonomy (figure 1) is composed
of different skills and skill primitives than enable a robot
to achieve some assembly objective. It is an example of the
hierarchical organization that exists in this type of structured
task decomposition. The taxonomy is broad enough to be
used in a wide range of settings, but expressive enough to
describe the requirements for performing these tasks.

One clear advantage of the modeling taxonomy described
here is the ability to leverage tools associated with for-
mal modeling languages like SysML (sys 2010), specifically
code generation and simulation. We can use the model tax-
onomy to do automatic code generation, significantly sim-
plifying the task of generating and maintaining the software
implementation of the desired task. We can also use the
model to do simulation of the task, which greatly reduces
the overhead associated with testing these potentially large,
complex systems.
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Figure 1: Taxonomy for manufacturing assembly task.

Another benefit of representing skills in this way is that
it allows our representation to be independent of both hard-
ware and implementation. The simplest building blocks in
our taxonomy are the skill primitives, which are atomic ac-
tions that a robot is able to perform. Similarly, the Transport
skill simply allows the task model to specify that a move-
ment action must be performed, without worrying about the
details of which algorithm must be used to perform that ac-
tion. In fact any algorithm or combination of algorithms or
approaches could be used to perform that movement action
through any space, while still satisfying the requirements of
Transport.

In the next sections we will discuss various components
of the taxonomy.

Skills

Here we discuss the skill primitives (SP) that have been in-
cluded in the taxonomy, as well as their function and justifi-
cation for inclusion. We also continue using the example of
programming by demonstration to populate the taxonomy
using generalized skills obtained through programming by
demonstration techniques. As it is instructive to consider
these SP’s in light of the various needs required to create
them in the taxonomy, we examine a number of these re-
quirements in the acquisition and eventual execution of the
generalized skills. Specifically, acquisition requires that the
system can recognize occurrences in the environment, such
as actions or objects, and a particular parameterization. Ex-
ecution requires certain perceptual capabilities as well as an
appropriate control law. Analyzing the skills in this way al-
lows us to have a better grasp of the diversity in sensory
requirements for recognition and parameterization, and the
needed control strategies.

Many of the skill primitives in the taxonomy are straight
forward and self-descriptive in their function. For example,
the Align SP is a necessary component that allows a robot to
be able to align itself with some feature in the environment,
such as an object’s pose, relative to some constraints. The
Insert SP is needed to perform any type of insertion task,
such as peg-in-hole-type tasks, again relative to certain con-
straints.

To acquire a generalized representation for Align, the
robot needs to recognize objects in the environment with
which it is to align, while the parameterization could be
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Figure 2: Acquisition and execution requirements for skill
primitives.

some relative pose. To execute this skill, the robot would
need perception for recognizing the object to align with as
well as perception for servoing, and there would need to be
a controller capable of visual servoing to the required pose
(relative to the object.)

To acquire Insert, the robot would need to recognize both
objects and actions related to the Insert operation, while pa-
rameterizing pose and constraints. To replicate the action,
the robot has perceptual needs both in vision, and in force
at the end effector. The control would require an impedance
control law.

Transport, a skill to move the robot from one location to
another, requires action recognition, as well as start and goal
locations for a parameterization. The execution perceptually
could require object recognition (for obstacle avoidance, de-
pending on environment), as well as a path planning and
following control law.

Similar to Transport, Slide also requires action recogni-
tion to identify the slide action, and a start and goal location
to parameterize the action. Execution of Slide requires the
ability to have perception of forces at the end effector, and
an impedance controller for the control.

The Screw skill primitive can be learned solely through
action recognition, and is parameterized by the torque on
the end effector. The generalized Screw action is performed
by have force perception at the tool tip, and using a torque-
based controller to insert.

Constraints

Many of the SP’s in our Assembly taxonomy are parame-
terized relative to certain physical constraints. These con-
straints include Time Period, Pose, Environment, and Mo-



Figure 4: Fasten skill.

tion.

Time Period can be used by Hold to describe how long
something should be held in the specified pose, and can also
indicate that some action must be completed in a certain
amount of time. Actions such as Align and Transport will
often be done with respect to some goal or destination pose.
Examples of Environment constraints include workspace
limitations and restrictions, the need to follow a particular
surface, and constraints in which motion planning through
the environment is done in the presence of obstacles. Mo-
tion constraints relate to the actual motion of the robot, and
include Speed, DOF, and Motion Type. Speed and Motion
Type could be used when a robot needs to follow a trajectory
with a specific velocity, such as in a welding task.

Flexibility

The claim has been made that the proposed taxonomy is flex-
ible enough to accommodate a wide variety of variations in
the task model. This is evident in Fasten. The Fasten skill is
divided into several different skill primitives; Screw, Glue,
and Rivet.

This was done to be able to more accurately model tasks
in manufacturing environments. While a single Fasten SP
could be sufficient to represent task decompositions in some
contexts, it is not sufficient for a wider range of tasks in the
broad context of manufacturing. In a similar manner, while
the Drill SP could in some contexts be a complete descrip-
tion of robot capabilities, in other situations it may not be
expressive enough. In these situations the taxonomy is able
to exercise dynamic abstraction, creating separate Drill SP’s
that capture the nuances required under the now more gen-
eral Drill skill. This ability to be able to adjust the level
of abstraction for any skill to suit needed modeling require-
ments in different situations is one strength of this represen-
tation.

Coordination

One essential capability to be able to be flexible and robust
enough to represent all types of manufacturing tasks is the
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Figure 5: Coordinate skill

ability to encapsulate the coordination of multiple systems
operating in concert to achieve the manufacturing objective.
Ideally the representation would be able to handle robots of
differing configurations and specifications (e.g. both robots
with identical specifications tasked with different roles, such
as identical robots on opposite sides of a conveyor line, as
well as robots with different specifications entirely, such as
serial manipulators working with parallel platforms or mo-
bile platforms.)

This is one of the strengths of the proposed taxonomy, in
that it is general enough to be able to cope with these differ-
ent platforms and systems as they perform various tasks to
achieve the overall objective. The Coordinate skill allows
for this collaboration to be specified. It specifically allows
for discrete tasks performed by individual robots to be put in
the proper sequence for successful completion of the task,
using the Before, After, and Sync SP’s. Actions that can
be performed in parallel do not need to be explicitly coded,
and can be synchronized in terms of the tasks and need to be
completed in sequence.

Tool Use

Another important aspect to consider with robots working
in manufacturing environments is making sure that the rep-
resentation can accommodate the ability to use tools in the
accomplishment of the desired task. Tools are required to
complete most complex manufacturing tasks. This impor-
tant requirement is handled in our taxonomic framework in
two ways. First, the constraint parameterization allows for
specifications to be given in different frames of reference,
indicated by the Frame constraint. The reference frame as-
sociated with a particular tool could then be given whenever
the tool is in use by the robot.

An essential function needed by the robot in order to use
a tool is the ability to actuate (or otherwise activate and use)
the tool. For this reason the Tool Action SP exists in the tax-
onomy. This enables the system to functionally operate the
tool, such as activating a drill, or actuating the mechanism
for dispensing glue on a gluing tool.

Mobility

For the proposed framework to capture the capabilities of
various robotic systems, the concept of mobility must also
be addressed. In the context of the assembly task, there
are several different types of robots that may use this skill,
from simple mobile platforms to full mobile manipulation
systems.

The taxonomy that has been discussed in the previous
sections can be used to describe mobility, by utilizing the
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Figure 6: Detect skill.

Transport and Hold SP’s. By using a different parameter-
ization, Transport can be used to move a mobile platform
from one configuration to another, just as it can move the
end effector (or some object in the end effector) of a manip-
ulator to a desired location. Similarly Hold can be used in
the same context as a manipulator, instructing the robot (in
this case a mobile platform) to hold a specific configuration
for a certain amount of time.

Using the ability of this system to capture mobile systems
along with the Coordinate skills, one could imagine a task
description that includes not only manipulators but mobile
platforms as well, to perform various tasks and improve ef-
ficiency in the system.

Perception

While not explicitly a part of the proposed Assembly taxon-
omy, an indispensable part of the effective use of the taxon-
omy is the interaction with the perception subsystem. Many
different types of perception are required to execute an as-
sembly task, and the taxonomy is able to facilitate this inter-
action.

The Detect SP is essentially the interface module into the
perception actions. Constraints or parameters into this skill
primitive are defined as features to be detected, and include
Object, Pose, Contact, and Force/Torque.

These feature types handle the various types of perception
that is required in assembly. This would cover sensors and
algorithms that have to do with pose estimation and object
detection, such as cameras and 3D scanners, and other meth-
ods of finding and localizing desired objects for manipula-
tion. Other sensors of interest that are useful in this context
include contact sensors and force/torque sensors for detect-
ing contact within the environment and performing complex,
accurate manipulation tasks.

It is important to note that the taxonomy is designed to be
independent of both hardware and algorithmic implementa-
tion. While the various parameters of Detect provide a win-
dow into or method of interacting with the perception system
of the robot, this does not depend on the type of sensor used
or the algorithm or method used to extract meaning from the
Sensor.
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Figure 7: Airplane constructed using toy Kit.

Control

Equally as important to the performance of the assembly
task as the interaction with the perception subsystem is the
ability of the taxonomy to interact with the control subsys-
tem. With the exception of Detect and Coordinate, all SP’s
interact with the control subsystem by calling on some con-
troller to perform some action. Imsert will call on a con-
troller to change the position of the end effector, Slide will
control on the contact interactions at the tool tip to slide the
workpiece along some surface. There are many different
types of controllers that are needed by the system to do as-
sembly.

Here again it should be mentioned, however, that the tax-
onomy is independent of implementation. Just as Transport
does not depend on the path planning algorithm used to plan
the path to be taken, neither does it depend on the type of
controller utilized to drive that path.

The control subsystem and the perception subsystem are
tightly integrated. In most cases, the controllers called into
action by the SP’s will in turn call perception functions to
provide feedback to close the loop. For example, Align will
depend on the perception subsystem for the robot’s pose to
identify when it has achieved its goal. The perception sys-
tem will often provide terminal conditions for the controller,
which will in turn signal the system that the task is over and
a new task can be attempted.

Demonstration

In this section we will discuss a demonstration prepared to
show how the taxonomy can be used to model an assembly
task. The example task we are using to illustrate this point is
the simulated assembly of a toy airplane using a Baufix toy
kit (see Fig. 7).

The toys parts used to assemble the plane are simple,
brightly colored wooden construction parts such as screws,
washers, blocks, nuts and boards. The model airplane was
built using 31 individual parts.

Several UML-based sequence diagrams have been pre-
pared to demonstrate a method of using the taxonomy to
model the toy airplane assembly. The sequence diagram is
intended to show the organization of an assembly objective
into a sequence of actions that are to be performed, and uti-
lizes the skills described in the taxonomy as discrete steps in
the sequence.
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Figure 8: Sequence diagram for a single manipulator.

The first diagram (figure 8) shows the assembly of the
toy airplane using a single manipulator and a static fixture
designed specifically to aid the robot in this airplane assem-
bly task. This sequence diagram is composed of three main
lines; the Robot, the Fixture, and a Part Bin. Each message
from the robot to either the fixture or part bin represent an
instantiation of a skill primitive (message 1 is a Detect, mes-
sage 2 is Align, etc.) It is assumed in this simulation that
all desired parts in the part bin are visible and accessible.
Execution of the assembly sequence is performed from top
to bottom (as indicated by the numbered messages.) Small
groups of messages comprise stages in the assembly process.
For example, messages 1-3 can be thought to represent the
goal of getting part Taill from the part bin, while messages
4-7 place Taill into the fixture. While only a portion of the
sequence diagram is shown (the first 17 actions), it took 258
actions, or instantiations of skill primitives, to complete the
assembly of the toy airplane.

The second sequence diagram (figure 9) shows the same
toy airplane assembly task, this time using two manipula-
tors. The main differences between the single robot and dual
robot diagrams are that in the dual arm example, a second
robot main line as been added, along with another part bin
main line. The second part bin main line serves two pur-
poses: first, it makes the diagram easier to read by reducing
the clutter across the main lines; second, it allows for the
possibility of either having both robots use the same part bin
or having two separate part bins. The Coordinate skill is
used to synchronize collaboration between the two robots.
The availability of a second manipulator allows for a greater
variability in how the assembly task is performed due to the
added dexterity, as well as a different design for the fixture.

The last diagram shown (figure 10) shows another mod-
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ification on the single manipulator sequence diagram. This
time the diagram has been expanded to include main lines
for the perception and control subsystems, to show the dif-
ferent interactions between both of those systems, as well as
those systems and the robot. The added interactions make
the sequence diagram significantly larger. Note also the con-
stant flow of feedback through the system, which more accu-
rately shows how information and control flows through the
system. This diagram shows the tight integration between
control and perception, as the control depends on perception
to provide feedback for the control loop. The types of per-
ception and control required are passed as parameters to the
relevant lines (that Detect should expect a Pose feature in
message 1, for example.)

Conclusion

In this paper we have presented a taxonomy for assembly
tasks in the domain of manufacturing and industrial robotics.
We have proposed this taxonomy as a robust and flexible
method for modeling assembly task descriptions that are
generalizable across multiple hardware platforms in vari-
ous configurations. This can be a relatively simple and
efficient method for simplifying robot programming and
reusing knowledge across these robotic systems, easing the
transition to new systems and system configurations, as well
as reducing time and financial overhead.

Current and future work with this taxonomy includes a
hardware implementation of the demonstration discussed in
the Experiments section, along with experiments demon-
strating the effectiveness of how this taxonomy represen-
tation can be used to transfer learned knowledge from one
robot to another. One assembly experiment will be run us-
ing a KUKA KRS5-sixx R650, a standard 6-DOF manipu-
lator. Further experiments will also be performed on other
platforms to test the robustness of the generalized skills and
skill primitives.
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